Thursday, September 22, 2016

ELEKTRONIKA TERAPAN RANGKAIAN POWER SUPPLY

Power Supply (catu daya)


1. Prinsip Kerja Catu Daya Linear

Perangkat elektronika mestinya dicatu oleh suplai arus searah DC (direct current) yang stabil agar dapat bekerja dengan baik. Baterai atau accu adalah sumber catu daya DC yang paling baik. Namun untuk aplikasi yang membutuhkan catu daya lebih besar, sumber dari baterai tidak cukup. Sumber catu daya yang besar adalah sumber bolak-balik AC (alternating current) dari pembangkit tenaga listrik. Untuk itu diperlukan suatu perangkat catu daya yang dapat mengubah arus AC menjadi DC. Pada tulisan kali ini disajikan prinsip rangkaian catu daya (power supply) linier mulai dari rangkaian penyearah yang paling sederhana sampai pada catu daya yang ter-regulasi.

2. PENYEARAH (RECTIFIER)

Prinsip penyearah (rectifier) yang paling sederhana ditunjukkan pada gambar-1 berikut ini. Transformator (T1) diperlukan untuk menurunkan tegangan AC dari jala-jala listrik pada kumparan primernya menjadi tegangan AC yang lebih kecil pada kumparan sekundernya.

Pada rangkaian ini, dioda (D1) berperan hanya untuk merubah dari arus AC menjadi DC dan meneruskan tegangan positif ke beban R1. Ini yang disebut dengan penyearah setengah gelombang (half wave). Untuk mendapatkan penyearah gelombang penuh (full wave) diperlukan transformator dengan center tap (CT) seperti pada gambar-2.

Tegangan positif phasa yang pertama diteruskan oleh D1 sedangkan phasa yang berikutnya dilewatkan melalui D2 ke beban R1 dengan CT transformator sebagai common ground.. Dengan demikian beban R1 mendapat suplai tegangan gelombang penuh seperti gambar di atas. Untuk beberapa aplikasi seperti misalnya untuk men-catu motor dc yang kecil atau lampu pijar dc, bentuk tegangan seperti ini sudah cukup memadai. Walaupun terlihat di sini tegangan ripple dari kedua rangkaian di atas masih sangat besar.

Gambar 3 adalah rangkaian penyearah setengah gelombang dengan filter kapasitor C yang paralel terhadap beban R. Ternyata dengan filter ini bentuk gelombang tegangan keluarnya bisa menjadi rata. Gambar-4 menunjukkan bentuk keluaran tegangan DC dari rangkaian penyearah setengah gelombang dengan filter kapasitor. Garis b-c kira-kira adalah garis lurus dengan kemiringan tertentu, dimana pada keadaan ini arus untuk beban R1 dicatu oleh tegangan kapasitor. Sebenarnya garis b-c bukanlah garis lurus tetapi eksponensial sesuai dengan sifat pengosongan kapasitor.


Kemiringan kurva b-c tergantung dari besar arus (I) yang mengalir ke beban R. Jika arus I = 0 (tidak ada beban) maka kurva b-c akan membentuk garis horizontal. Namun jika beban arus semakin besar, kemiringan kurva b-c akan semakin tajam. Tegangan yang keluar akan berbentuk gigi gergaji dengan tegangan ripple yang besarnya adalah :

Vr = VM -VL

dan tegangan dc ke beban adalah Vdc = VM + Vr/2

Rangkaian penyearah yang baik adalah rangkaian yang memiliki tegangan ripple (Vr) paling kecil. VL adalah tegangan discharge atau pengosongan kapasitor C, sehingga dapat ditulis :

VL = VM e -T/RC

Jika persamaan (3) disubsitusi ke rumus (1), maka diperole

Vr = VM (1 – e -T/RC)

Jika T << RC, dapat ditulis : e -T/RC  1 – T/RC

sehingga jika ini disubsitusi ke rumus (4) dapat diperoleh persamaan yang lebih sederhana :

Vr = VM(T/RC)

VM/R tidak lain adalah beban I, sehingga dengan ini terlihat hubungan antara beban arus I dan nilai kapasitor C terhadap tegangan ripple Vr. Perhitungan ini efektif untuk mendapatkan nilai tegangan ripple yang diinginkan.

Vr = I T/C

Rumus ini mengatakan, jika arus beban I semakin besar, maka tegangan ripple akan semakin besar. Sebaliknya jika kapasitansi C semakin besar, tegangan ripple akan semakin kecil. Untuk penyederhanaan biasanya dianggap T=Tp, yaitu periode satu gelombang sinus dari jala-jala listrik yang frekuensinya 50Hz atau 60Hz. Jika frekuensi jala-jala listrik 50Hz, maka T = Tp = 1/f = 1/50 = 0.02 det. Ini berlaku untuk penyearah setengah gelombang. Untuk penyearah gelombang penuh, tentu saja frekuensi gelombangnya dua kali lipat, sehingga T = 1/2 Tp = 0.01 det.

Penyearah gelombang penuh dengan filter C dapat dibuat dengan menambahkan kapasitor pada rangkaian gambar 2. Bisa juga dengan menggunakan transformator yang tanpa CT, tetapi dengan merangkai 4 dioda seperti pada gambar-5 berikut ini.


Sebagai contoh, anda mendisain rangkaian penyearah gelombang penuh dari catu jala-jala listrik 220V/50Hz untuk mensuplai beban sebesar 0.5 A. Berapa nilai kapasitor yang diperlukan sehingga rangkaian ini memiliki tegangan ripple yang tidak lebih dari 0.75 Vpp. Jika rumus (7) dibolak-balik maka diperoleh.

C = I.T/Vr = (0.5) (0.01)/0.75 = 6600 uF

Untuk kapasitor yang sebesar ini banyak tersedia tipe elco yang memiliki polaritas dan tegangan kerja maksimum tertentu. Tegangan kerja kapasitor yang digunakan harus lebih besar dari tegangan keluaran catu daya. Anda barangkali sekarang paham mengapa rangkaian audio yang anda buat mendengung, coba periksa kembali rangkaian penyearah catu daya yang anda buat, apakah tegangan ripple ini cukup mengganggu. Jika dipasaran tidak tersedia kapasitor yang demikian besar, tentu bisa dengan memparalel dua atau tiga buah kapasitor.

3. Voltage Regulator

Rangkaian penyearah sudah cukup bagus jika tegangan ripple-nya kecil, namun ada masalah stabilitas. Jika tegangan PLN naik/turun, maka tegangan outputnya juga akan naik/turun. Seperti rangkaian penyearah di atas, jika arus semakin besar ternyata tegangan dc keluarnya juga ikut turun. Untuk beberapa aplikasi perubahan tegangan ini cukup mengganggu, sehingga diperlukan komponen aktif yang dapat meregulasi tegangan keluaran ini menjadi stabil.

Regulator Voltage berfungsi sebagai filter tegangan agar sesuai dengan keinginan. Oleh karena itu biasanya dalam rangkaian power supply maka IC Regulator tegangan ini selalu dipakai untuk stabilnya outputan tegangan.

Berikut susunan kaki IC regulator tersebut.

Misalnya 7805 adalah regulator untuk mendapat tegangan +5 volt, 7812 regulator tegangan +12 volt dan seterusnya. Sedangkan seri 79XX misalnya adalah 7905 dan 7912 yang berturut-turut adalah regulator tegangan -5 dan -12 volt.

Selain dari regulator tegangan tetap ada juga IC regulator yang tegangannya dapat diatur. Prinsipnya sama dengan regulator OP-amp yang dikemas dalam satu IC misalnya LM317 untuk regulator variable positif dan LM337 untuk regulator variable negatif. Bedanya resistor R1 dan R2 ada di luar IC, sehingga tegangan keluaran dapat diatur melalui resistor eksternal tersebut.

Rangkaian regulator yang paling sederhana ditunjukkan pada gambar 6. Pada rangkaian ini, zener bekerja pada daerah breakdown, sehingga menghasilkan tegangan output yang sama dengan tegangan zener atau Vout = Vz. Namun rangkaian ini hanya bermanfaat jika arus beban tidak lebih dari 50mA.



Prinsip rangkaian catu daya yang seperti ini disebut shunt regulator, salah satu ciri khasnya adalah komponen regulator yang paralel dengan beban. Ciri lain dari shunt regulator adalah, rentan terhadap short-circuit. Perhatikan jika Vout terhubung singkat (short-circuit) maka arusnya tetap I = Vin/R1. Disamping regulator shunt, ada juga yang disebut dengan regulator seri. Prinsip utama regulator seri seperti rangkaian pada gambar 7 berikut ini. Pada rangkaian ini tegangan keluarannya adalah:

Vout = VZ + VBE

VBE adalah tegangan base-emitor dari transistor Q1 yang besarnya antara 0.2 – 0.7 volt tergantung dari jenis transistor yang digunakan. Dengan mengabaikan arus IB yang mengalir pada base transistor, dapat dihitung besar tahanan R2 yang diperlukan adalah :

R2 = (Vin – Vz)/Iz

Iz adalah arus minimum yang diperlukan oleh dioda zener untuk mencapai tegangan breakdown zener tersebut. Besar arus ini dapat diketahui dari datasheet yang besarnya lebih kurang 20 mA.



Jika diperlukan catu arus yang lebih besar, tentu perhitungan arus base IB pada rangkaian di atas tidak bisa diabaikan lagi. Dimana seperti yang diketahui, besar arus IC akan berbanding lurus terhadap arus IB atau dirumuskan dengan IC = bIB. Untuk keperluan itu, transistor Q1 yang dipakai bisa diganti dengan transistor Darlington yang biasanya memiliki nilai b yang cukup besar. Dengan transistor Darlington, arus base yang kecil bisa menghasilkan arus IC yang lebih besar.

Teknik regulasi yang lebih baik lagi adalah dengan menggunakan Op-Amp untuk men-drive transistor Q, seperti pada rangkaian gambar 8. Dioda zener disini tidak langsung memberi umpan ke transistor Q, melainkan sebagai tegangan referensi bagi Op-Amp IC1. Umpan balik pada pin negatif Op-amp adalah cuplikan dari tegangan keluar regulator, yaitu :

Vin(-) = (R2/(R1+R2)) Vout

Jika tegangan keluar Vout menaik, maka tegangan Vin(-) juga akan menaik sampai tegangan ini sama dengan tegangan referensi Vz. Demikian sebaliknya jika tegangan keluar Vout menurun, misalnya karena suplai arus ke beban meningkat, Op-amp akan menjaga kestabilan di titik referensi Vz dengan memberi arus IB ke transistor Q1. Sehingga pada setiap saat Op-amp menjaga kestabilan :

Vin(-) = Vz


Dengan mengabaikan tegangan VBE transistor Q1 dan mensubsitusi rumus (11) ke dalam rumus (10) maka diperoleh hubungan matematis :

Vout = ( (R1+R2)/R2) Vz

Pada rangkaian ini tegangan output dapat diatur dengan mengatur besar R1 dan R2.

Sekarang mestinya tidak perlu susah payah lagi mencari op-amp, transistor dan komponen lainnya untuk merealisasikan rangkaian regulator seperti di atas. Karena rangkaian semacam ini sudah dikemas menjadi satu IC regulator tegangan tetap. Saat ini sudah banyak dikenal komponen seri 78XX sebagai regulator tegangan tetap positif dan seri 79XX yang merupakan regulator untuk tegangan tetap negatif. Bahkan komponen ini biasanya sudah dilengkapi dengan pembatas arus (current limiter) dan juga pembatas suhu (thermal shutdown). Komponen ini hanya tiga pin dan dengan menambah beberapa komponen saja sudah dapat menjadi rangkaian catu daya yang ter-regulasi dengan baik.

Hanya saja perlu diketahui supaya rangkaian regulator dengan IC tersebut bisa bekerja, tegangan input harus lebih besar dari tegangan output regulatornya. Biasanya perbedaan tegangan Vin terhadap Vout yang direkomendasikan ada di dalam datasheet komponen tersebut. Pemakaian heatshink (aluminium pendingin) dianjurkan jika komponen ini dipakai untuk men-catu arus yang besar. Di dalam datasheet, komponen seperti ini maksimum bisa dilewati arus mencapai 1 A.

PENGENALAN ELEKTRONIKA DASAR ( ELDAS )

Pada kesempatan pertama ini, kita akan membahas mengenai ELDAS (ELEKTRONIKA DASAR), karena ini juga mengenai tugas petama yang ane terima di kampus tercinta ane, maka ijinkan ane untuk saling share,

Komponen Elektronika dan Fungsinya 


Komponen Elektronika dan fungsinya. Tak kenal maka tak sayang, siapa yang tidak tahu sepotong kalimat ini. Kalimat peribahasa ini tentu temen temen juga sudah pernah mendengarnya.
Ya betul, tak kenal maka tak saying, jadi kalo pengen saying sayangan ya harus kanal dulu, betul? Begitu juga di dunia rangkaian elektronika ini, temen temen yang pengen belajar lebih mendalam tentang elektronika ini pun harus mengenal terlebih dahulu apa itu komponen elektronika dan fungsinya. Tanpa pengetahuan ini, teman teman akan sangat disayangkan nantinya karena sudah mendalami tentang elektronika tapi temen temen malah tidak tau misalkan seperti apa bentuknya, dan seperti apa fungsinya.
Oke,, bahasan kali ini kita akan mencoba membahas tentang komponen elektronika dan fungsinya. Dimulai dari yang simple simple saja, misalkan seperti resistor, kapasitor, induktor, diode dan lain sebagainya. Siap untuk lanjut? Mari kita bahas satu persatu.

1. Resistor
Tahanan listrik yang ada pada sebuah penghantar dilambangkan dengan huruf R , tahanan merupakan komponen yang didesain untuk memiliki besar tahanan tertentu dan disebut pula sebagai resistor.

Rumusnya adalah sebagai berikut : 
R = V/I
dimana :
R = Tahanan dengan satuan Ohm
V = Tegangan dengan satuan Volt
I = Arus dengan satuan Ampere
Beberapa kategori resistor adalah resistor linear dan resistor non linear. Resistor linear adalah resistor yang bekerja sesuai dengan hukum ohm sedangkan Resistor non Linear adalah resistor yang dimana perubahan nilainya dikarenakan oleh kepekaan tertentu (peka cahaya, peka panas, peka tegangan listrik).

2. Kapasitor
Kapasitor merupakan komponen yang berfungsi untuk penyimpan muatan listrik yang dibentuk dari dua permukaan yang berhubungan tapi dipisahkan oleh satu penyekat.

Besarnya kapasitansi dapat dihitung dengan rumus seperti berikut ini :
Kapasitansi C = ( Muatan Q / Tegangan V ).
Kapasitor adalah suatu komponen elektronika yang berfungsi untuk menyimpan arus listrik dalam bentuk muatan. sebuah kapasitor pada dasarnya terbuat dari dua buah lempengan logam yang saling sejajar satu sama lain dan diantara kedua logam tersebut terdapat bahan isolator yang sering disebut dielektrik.
Fungsi kapasitor adalah pada rangkaian rangkaian elektronika biasanya adalah sebagai berikut:
Ø Kapasitor sebagai kopling, dilihat dari sifat dasar kapasitor yaitu dapat dilalui arus ac dan tidak dapat dilalui arus dc dapat dimanfaatkan untuk memisahkan 2 buah rangkaian yang saling tidak berhubungan secara dc tetapi masih berhubungan secara ac(signal), artinya sebuah kapasitor berfungsi sebagai kopling atau penghubng antara 2 rangkaian yang berbeda.
Ø Kapasitor berfungsi sebagai filter pada sebuah rangkaian power supply, yang saya maksud disini adalah kapasitor sebagai ripple filter, disini sifat dasar kapasitor yaitu dapat menyimpan muatan listrik yang berfungsi untuk memotong tegangan ripple.
Ø Kapasitor sebagai penggeser fasa.
Ø Kapasitor sebagai pembangkit frekuensi pada rangkaian oscilator.
Ø Kapasitor digunakan juga untuk mencegah percikan bunga api pada sebuah saklar.


3. Transistor


Transistor adalah komponen elektronika yang dipakai sebagai penguat, sebagai sirkuit pemutus dan penyambung (switching), stabilisasi tegangan, modulasi sinyal atau sebagai fungsi lainnya. Transistor dapat berfungsi semacam kran listrik, dimana berdasarkan arus inputnya atau tegangan inputnya, memungkinkan pengaliran listrik yang sangat akurat dari sirkuit sumber listriknya.

4. Induktor






Bentuk dasar dari sebuah induktor adalah kawat yang dililitkan menjadi sebuah koil. Induktor mempunyai sifat yang disebut dengan induktansi diri atau lebih sering disebut dengan induktansi, artinya adalah jika arus meningkat maka medan magnet juga akan meningkat mengikuti perbesaran dari arus.

Besar energi dalam inductor dapat dinyatakan dengan rumus berikut ini :
W = ½.L.I2
Ket :
W : energi dalam satuan Joule
L : induktansi dalam satuan Henry
I : arus dalam satuan Ampere

5. Dioda




Fungsi paling umum dari dioda adalah untuk memperbolehkan arus listrik mengalir dalam suatu arah (disebut kondisi panjar maju) dan untuk menahan arus dari arah sebaliknya (disebut kondisi panjar mundur). Karenanya biasa juga disebut sebagai penyearah

Dioda Zener



Dioda Zener biasanya digunakan secara luas dalam sirkuit elektronik. Fungsi utamanya adalah untuk menstabilkan tegangan.

Dioda LED




Dioda LED akan hidup apabila LED dialiri arus listrik, fungsi dari LED ini biasanya hanya sebagai indikator. Atau biasa juga disebut dengan lampu indikator/

6. TRASFORMATOR /TRAFO



Trasformator adalah alat yang mempunyai fungsi menaikan atau menurunkan tegangan input atau menurunkan tegangan output.
Ø Trasformator yang berfungsi untuk menaikan tegangan input adalah trafo step up
Ø Transformator yang mempunyai fungsi menurunkan tegangangan adalah trafo step down.
Cara kerja trasformator : Arus bolak - balik ( AC ) melewati koil utama ( kumparan primer ) yang menginduksi arus bolak - balik di koli kedua ( kuparan sekunder )

Komponen Elektronika

Elektronika adalah ilmu yang mempelajari alat listrik arus lemah yang dioperasikan dengan cara mengontrol aliran elektron atau partikel bermuatan listrik dalam suatu alat seperti komputer, peralatan elektronik, termokopel, semikonduktor, dan lain sebagainya. Ilmu yang mempelajari alat-alat seperti ini merupakan cabang dari ilmu fisika, sementara bentuk desain dan pembuatan sirkuit elektroniknya adalah bagian dari teknik elektro, teknik komputer, dan ilmu/ teknik elektronika dan instrumentasi.

Dalam rangkaian elektronika terdapat bermacam-macam komponen. Ada transistor, resistor, IC, trafo dan lain-lain. Komponen-komponen ini dikategorikan menjadi bagian-bagian berikut:

Komponen Pasif : 
resistor atau tahanan
kapasitor atau kondensator
induktor atau kumparan
transformator

Komponen Aktif :

* dioda :
dioda cahaya
dioda foto
dioda laser
diode Zener
dioda Schottky
* transistor :
transistor efek medan
transistor bipolar
transistor IGBT
transistor Darlington
transistor foto

Sirkuit Analog :
Amplifier atau Penguat
Opamp (Operational Amplifier) termasuk negative feedback
Amplifier Daya
FET (Filed Effect Transistor), JFET, MOSFET, MESFET, MODFET, HEMT
CMOS, N-MOS, P-MOS, Pass-transistor

Sirkuit Digital :
Gerbang logika
flip-flop
penghitung atau pencacah (Inggris: counter)
register
multiplekser (MUX) dan DEMUX
Penjumlah (Adder), Subtraktor (Pengurang) & Pengganda (Multiplier)
mikroprosesor
mikrokontroler
ADC, DAC, Atmel AVR‎
Digital Signal Processor (DSP)
FPGA (Field-Programmable Gate Array), ASIC, FPAA, Embedded-FPGA, CPLD
Semua jenis komputer digital: komputer super, mainframe, komputer mini, komputer pribadi desk-top, laptop, PDA, Smart card, telepon pintar, dll

Alat ukur :
Ohm-meter
Amper-meter
Voltmeter
Multimeter
Oskiloskop
Function generator
Digital Signal Analyzer
Spectrum meter

MACAM-MACAM KOMPONEN ELEKTRONIKA


Elektronika adalah ilmu yang mempelajari alat listrik arus lemah yang dioperasikan dengan cara mengontrol aliran elektron atau partikel bermuatan listrik dalam suatu alat seperti komputer, peralatan elektronik, termokopel, semikonduktor, dan lain sebagainya. Ilmu yang mempelajari alat-alat seperti ini merupakan cabang dari ilmu fisika, sementara bentuk desain dan pembuatan sirkuit elektroniknya adalah bagian dari teknik elektro, teknik komputer, dan ilmu/ teknik elektronika dan instrumentasi.Dalam rangkaian elektronika terdapat bermacam-macam komponen. Ada transistor, resistor, IC, trafo dan lain-lain. Komponen-komponen ini dikategorikan menjadi bagian-bagian berikut:
Komponen Pasif : yaitu komponen yang menunjukkan hubungan linear antara arus dan tegangan, jika komponen tersebut berada di dalam pengaruh medan listrik


A.
resistor atau tahanan adalah suatu bahan yang dapat menghambat arus listrik


*Jenis-jenis resistor tetap

Yaitu resistor yang nilainya tidak dapat berubah, jadi selalu tetap (konstan).
Resistor ini biasanya dibuat dari nikelin atau karbon. Berfungsi sebagai
pembagi tegangan, mengatur atau membatasi arus pada suatu rangkaian
serta memperbesar dan memperkecil tegangan.


. Resistor gulungan kawatresistor yang nilainya tidak dapat berubah, jadi selalu tetap (konstan). .Resistor Lapisan karbon

.Resistor lapisan oksidasi logam

.Resistor komposisi karbon


*Jenis-jenis resistor variabel

Yaitu resistor yang nilainya dapat berubah-ubah dengan jalan menggeser atau memutar toggle pada alat tersebut, sehingga nilai resistor dapat kita tetapkan sesuai dengan kebutuhan. Berfungsi sebagai pengatur volume (mengatur besar kecilnya arus), tone control pada sound

✔ Potensiometer

➔ Geser

➔ Putar

✔ Trimmer Potensiometer (TRIMPOT)


Resistor atau hambatan r diukur dalam satuan Ohm ( disimbolkan dengan “ Ω “ ).Bila dihubungkan dengan tegangan v ( satuannya Volt ) dan kuat arus I ( satuannya Ampere ) mempunyai rumus sebagai berikut :
V = I . R
R = V / I

















B. kapasitor atau kondensator → komponen dasar elektronika yang dapat menyimpan atau mengeluarkan muatan listrik















Fungsi kapasitor

✔ Memisahkan arus AC dan arus DC

✔ Meratakan arus DC pada penyearah arus

✔ Mengontrol frekuensi pada rangkaian isolator

✔ Menyimpan muatan listrik✗ Jenis-jenis kapasitor

✔ Kapasitor polar (ELCO)

✔ Kapasitor Non Polar (Kapasitor Kertas, Kapasitor Kermik, Kpasitor Mika, Kapasitor Poliester)

✔ Kapasitor Variabel (VARCo, TRIMMER)




Jenis kapasitor:


Kapasitor keramik
oksida dan oksida lainSesuai dengan namanya, kapasitor ini mempunyai dielektrik dari keramik. Dielektriknya umumnya berupa campuran antara titanium , dengan elektrode logam. Jenis kapasitor ini tidak memiliki kutub positif maupun negatif, jadi pemasangannya dalam PCB bisa terbalik tanpa mengalami masalah.
Ada dua sumber yang menyatakan tentang kapasitor keramik:
Kekuatan dari dielektriknya sangat kuat, dan berkapasitas besar. Pada umumnya jenis kapasitor ini digunakan untuk meredam bunga api. Misalnya bunga api yang timbul pada platina kendaraan bermotor.
Karena terbuat dari keramik, kondensator ini memiliki kapasitas yang kecil yaitu di bawah 1 mikrofarad. Umumnya digunakan dalam rangkaian penguat frekuensi menengah.
Tapi saya condong kepada yang kedua. Karena dalam kenyataannya apabila kita memang menggunakan kondensator keramik dalam rankaian radio. Mengenai yang pertama saya kurang tahu mengenai hal itu.


Kapasitor Kertas Jenis kapasitor ini menggunakan lapisan kertas setebal antara 0..02 – 0.05 mm dengan diapit oleh dua lembar kertas alumunium.
Kapasitor Elektrolit (Elco)
Kapasitor jenis ini menggunakan elektrolit sebagai dielektriknya. Umumnya oksida aluminium. Memiliki kaki positif maupun negatif, jadi usahakan jangan sampai terbalik. Digunakan sebagai perata denyutan listrik DC. Di badan kapasitor ini terdapat tanda untuk mengetahui mana kaki minus.
Kapasitor dengan dielektrik Udara
Jenis kapasitor ini menggunakan udara sebagai dielektriknya. Sebagai contoh tuner radio FM adalah jenis kapasitor udara. Cara kerja dari kapasitor ini mirip dengan varco. Besarnya kapasitas ditentukan dengan luas penampang yang saling berhadapan. Tuner diputar untuk mengubah kapasitas kapasitor sekaligus mengubah frekuensinya.
Varco
Varco atau variable condensator adalah jenis kapasitor yang dapat diubah-ubah kapasitasnya.
Dan beberapa jenis lainnya.

Kapasitas kapasitor Pada umumnya kapasitas kapasitor dinyatakan dalam mikrofarad. Karena dalam kehidupan sehari-hari 1 farad sudah sangat besar apabila digunakan dalam rankaian. Kapasitas kapasitor didefinisikan sebagai berikut:
“perbandingan tetap antara muatan (q) yang tersimpan dalam kapasitor dan beda potensial antara kedua plat konduktornya (v)”
Dari definisi di atas kita dapatkan rumus berikut:
C=q/v
Dengan:
C= kapasitas kapasitor (Farad)
q= muatan yang tersimpan (coulomb)
v= beda potensial (volt)
pada kapasitor apabila di pasangkan kepada rangkaian listrik, pasti mendapatkan muatan berbeda. Satu positif lainnya negatif.

Apabila kedua plat diberikan muatan q+ dan q-, beda potensial v, luas permukaan A, dan jarak antara plat adalah d, maka kapasitasnya dapat dirumuskan sebagai berikut
E=q/Aε0 dengan memasukkan rumus E=v/d dan diperoleh
C= ε0A/d
Dengan:
C= kapasitas kapasitor (Farad)
q= muatan yang tersimpan (coulomb)
v= beda potensial (volt)
ε0= permitivitas ruang hampa (8,85x10-12 C2N-2m-2)
d= luas plat (m2)
Dielektrik
Dielektrik didefinisikan sebgai berikut:
“bahan isolator yang digunakan untuk memisahkan kedua p
lat konduktor pada suatu kapasitor plat sejajar”
Tebal, jenis dan luas sangat menentukan besarnya kapasitas yang akan didapatkan.
Rangkaian KapasitorRangkaian kapasitor terdiri dari jenis rangkaian paralel, seri dan campuran.
ParalelTujuan dari memaralelkan kapasitor adalah untuk mendapatkan kapasitas yang lebih besar.
qtotal= q1+ q2+...
Vtotal=V1=V2=...
Ctotal=C1+C2+...
SeriTujuan menggunakan rangkaian seri adalah untuk mendapatkan nilai yang lebih kecil.
qtotal= q1= q2=...
Vtotal=V1+V2+...
1/Ctotal=1/C1+1/C2+…
CampuranBertujuan untuk mendapatkan nilai yang diinginkan sesuai dengan rumus di atas.


C. kumparan/induktor
Sebuah induktor atau reaktor adalah sebuah komponen elektronika pasif (kebanyakan berbentuk torus) yang dapat menyimpan energi pada medan magnet yang ditimbulkan oleh arus listrik yang melintasinya. Kemampuan induktor untuk menyimpan energi magnet ditentukan oleh induktansinya, dalam satuan Henry. Biasanya sebuah induktor adalah sebuah kawat penghantar yang dibentuk menjadi kumparan, lilitan membantu membuat medan magnet yang kuat di dalam kumparan dikarenakan hukum induksi Faraday. Induktor adalah salah satu komponen elektronik dasar yang digunakan dalam rangkaian yang arus dan tegangannya berubah-ubah dikarenakan kemampuan induktor untuk memproses arus bolak-balik.

Sebuah induktor ideal memiliki induktansi, tetapi tanpa resistansi atau kapasitansi, dan tidak memboroskan daya. Sebuah induktor pada kenyataanya merupakan gabungan dari induktansi, beberapa resistansi karena resistivitas kawat, dan beberapa kapasitansi. Pada suatu frekuensi, induktor dapat menjadi sirkuit resonansi karena kapasitas parasitnya. Selain memboroskan daya pada resistansi kawat, induktor berinti magnet juga memboroskan daya di dalam inti karena efek histeresis.
D.transformator
Dikenal dengan istilah trafo, adalah suatu alat elektronik yang memindahkan energi dari satu sirkuit elektronik ke sirkuit lainnya melalui pasangan magnet. Biasanya dipakai untuk mengubah tegangan listrik dari tinggi ke rendah dan berarti juga mengubah arus listrik dari rendah ke tinggi






Efisiensi Efisiensi transformator dapat diketahui dengan rumus Karena adanya kerugian pada transformator. Maka efisiensi transformator tidak dapat mencapai 100%. Untuk transformator daya frekuensi rendah, efisiensi bisa mencapai 98%. Jenis-jenis transformator Step-Up

lambang transformator step-up
Transformator step-up adalah transformator yang memiliki lilitan sekunder lebih banyak daripada lilitan primer, sehingga berfungsi sebagai penaik tegangan. Transformator ini biasa ditemui pada pembangkit tenaga listrik sebagai penaik tegangan yang dihasilkan
generator menjadi tegangan tinggi yang digunakan dalam transmisi jarak jauh .
Step-Down skema transformator step-down
Transformator step-down memiliki lilitan sekunder lebih sedikit daripada lilitan primer, sehingga berfungsi sebagai penurun tegangan. Transformator jenis ini sangat mudah ditemui, terutama dalam
adaptor AC- DC .
Komponen Aktif :
adalah komponen-komponen didalam rangkaian elektronik yang mempunyai penguatan atau mengarahkan aliran arus listrik



*Dioda
→ suatu bahan elektrikum yang tersusun atas 2 elektroda yaitu elektroda positif dan negatif


✗ Prinsip kerja
✔ Forward Biass (arah maju) dari anoda ke katoda
✔ Reverse Biass (arah mundur) dari katoda ke anoda
✗ Jenis-jenis Diode
✔ Dioda Zener = menstabilkan tegangan
✔ Dioda Kristal = Dioda kontak titik
✔ Light Emilting Diode (LED) = Lampu induktor
✔ Photo Diode = pencacah, penghitung
✔ Dioda Silikon = Penyearah Arus
✗ Jenis-jenis resistor yang bergantung pada suhu (TERMISTOR)
✔ NTC ( Negative Temprature Coeficient )
✔ PTC ( Positive Temprature Coeficient )
✗ Fungsi Diode
✔ Penyearah Arus
✔ Pencacah Penghitung
✔ Menstabilkan tegangan

a. dioda cahaya
b. dioda foto
c. dioda laser
d. diode Zener
e. dioda Schottky

transistor : → rancangan komponen yang terdiri dari 3 komponen diode tipe P (+) dan tipe N (-)

✗ Komponen penyusun transistor

Emitor = Pembawa muatan

✔ Basis = Pengatur gerak pembawa muatan dari emitor ke collector

✔ collector = Pengatur gerak pembawa muatan dari emitor ke output












*Fungsi transistor

✔ Penguat arus

✔ Penguat tegangan atau penguat getaran

✔ Pembangkit getaran✔ Saklar· IC (Integrated Circuit) → merupakan kombinasi dari beberapa komponen elektronika yaitu diode, resistor, dan kapasitor kecil. JENIS IC : IC MONOLITHIK, IC HYBRIDA (IC LINEAR, IC TTL, IC CMOL)


JENIS-JENIS TRANSISTOR

Secara umum, transistor dapat dibeda-bedakan berdasarkan banyak kategori:
Materi semikonduktor: Germanium, Silikon, Gallium Arsenide
Kemasan fisik: Through Hole Metal, Through Hole Plastic, Surface Mount, IC, dan lain-lain
Tipe:
UJT , BJT , JFET , IGFET ( MOSFET ), IGBT , HBT , MISFET , VMOSFET , MESFET , HEMT , SCR serta pengembangan dari transistor yaitu IC (Integrated Circuit) dan lain-lain.
Polaritas: NPN atau N-channel, PNP atau P-channel
Maximum kapasitas daya: Low Power, Medium Power, High Power
Maximum frekwensi kerja: Low, Medium, atau High Frequency, RF transistor, Microwave, dan lain-lain
Aplikasi: Amplifier, Saklar, General Purpose, Audio, Tegangan Tinggi, dan lain-lain



BJT BJT (Bipolar Junction Transistor) adalah salah satu dari dua jenis transistor. Cara kerja BJT dapat dibayangkan sebagai dua dioda yang terminal positif atau negatifnya berdempet, sehingga ada tiga terminal. Ketiga terminal tersebut adalah emiter (E), kolektor (C), dan basis (B).
Perubahan arus listrik dalam jumlah kecil pada terminal basis dapat menghasilkan perubahan arus listrik dalam jumlah besar pada terminal kolektor. Prinsip inilah yang mendasari penggunaan transistor sebagai penguat elektronik. Rasio antara arus pada koletor dengan arus pada basis biasanya dilambangkan dengan β atau hFE. β biasanya berkisar sekitar 100 untuk transistor-transisor BJT.




FET
FET dibagi menjadi dua keluarga: Junction FET (
JFET ) dan Insulated Gate FET (IGFET) atau juga dikenal sebagai Metal Oxide Silicon (atau Semiconductor) FET ( MOSFET ). Berbeda dengan IGFET, terminal gate dalam JFET membentuk sebuah dioda dengan kanal (materi semikonduktor antara Source dan Drain). Secara fungsinya, ini membuat N-channel JFET menjadi sebuah versi solid-state dari tabung vakum, yang juga membentuk sebuah dioda antara grid dan katode . Dan juga, keduanya (JFET dan tabung vakum) bekerja di "depletion mode", keduanya memiliki impedansi input tinggi, dan keduanya menghantarkan arus listrik dibawah kontrol tegangan input.
FET lebih jauh lagi dibagi menjadi tipe enhancement mode dan depletion mode. Mode menandakan polaritas dari tegangan gate dibandingkan dengan source saat FET menghantarkan listrik. Jika kita ambil N-channel FET sebagai contoh: dalam depletion mode, gate adalah negatif dibandingkan dengan source, sedangkan dalam enhancement mode, gate adalah positif. Untuk kedua mode, jika tegangan gate dibuat lebih positif, aliran arus di antara source dan drain akan meningkat. Untuk P-channel FET, polaritas-polaritas semua dibalik. Sebagian besar IGFET adalah tipe enhancement mode, dan hampir semua JFET adalah tipe depletion mode.

Sirkuit Analog :a.Amplifier atau Penguat
b.Opamp (Operational Amplifier) termasuk negative feedback
c.Amplifier Daya
d.FET (Filed Effect Transistor), JFET, MOSFET, MESFET, MODFET, HEMT
e.CMOS, N-MOS, P-MOS, Pass-transistor

Sirkuit Digital : a. Gerbang logika
b.flip-flop
c.penghitung atau pencacah (Inggris: counter)
d.register
e.multiplekser (MUX) dan DEMUX
f.Penjumlah (Adder), Subtraktor (Pengurang) & Pengganda (Multiplier)
g.mikroprosesor
h.mikrokontroler
i.ADC, DAC, Atmel AVR‎
j.Digital Signal Processor (DSP)
k.FPGA (Field-Programmable Gate Array), ASIC, FPAA, Embedded-FPGA, CPLD
l.Semua jenis komputer digital: komputer super, mainframe, komputer mini, komputer pribadi m.desk-top, laptop, PDA, Smart card, telepon pintar, dll

Alat ukur :

a. Ohm-meter
b. Amper-meter
c.Voltmeter
d.Multimeter
e.Oskiloskop
f.Function generator
g.Digital Signal Analyzer
h.Spectrum meter